Radar Altimeter Data Corrections and Editing in Coastal Regions

Remko Scharroo, Altimetrics LLC, Cornish, New Hampshire

with contributions from

Hu Feng and Laurent Roublou
and others

Coastal Altimeter Workshop
Silver Spring, Maryland, 5–7 February 2008
Issues

- **Are corrections sufficient for coastal applications?**
 - Are corrections for open oceans only?
 - Can they be applied in coastal areas?
 - What corrections are particularly affected?
 - Are there alternatives?
 - Are alternatives available on the products?

- **Can we use standard edit criteria?**
 - Can we use edit criteria that are tailored to open oceans?
 - Do we need to restrict edit criteria?
 - Do we need to relax edit criteria?
 - Is all information available for editing the data?
Jason-1 and Envisat Editing
Jason-1 and Envisat Editing

-60...5 cm

-60...0 cm
Jason-1 and Envisat Editing

Dual-frequency iono correction

-40...4 cm

-40...4 cm
Jason-1 and Envisat Editing

Quality of dual-frequency measurement
Jason-1 and Envisat Editing

FES2004 ocean tide model

Remko Scharroo – Coastal Altimeter Workshop – Silver Spring, Maryland – 5-7 February 2008
Jason-1 and Envisat Editing

WebTide shelf model
Jason-1 and Envisat Editing
Jason-1 and Envisat Editing

Number of 20-Hz range measurements

17...20

16...20
Jason-1 and Envisat Editing

Std dev of range

0...40 cm

0...17 cm
Jason-1 and Envisat Editing

-0.5...8 m

0...8 m
Jason-1 and Envisat Editing

Backscatter coefficient

6...27 dB
<table>
<thead>
<tr>
<th></th>
<th>TOPEX</th>
<th>TOPEX(TDM)</th>
<th>Jason-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SSH measurements</td>
<td>145948</td>
<td>42345</td>
<td>72270</td>
</tr>
<tr>
<td>Rejected SSH</td>
<td>29896(21%)</td>
<td>11137(26%)</td>
<td>20811(29%)</td>
</tr>
<tr>
<td>Orbital altitude, GCM02C(m)</td>
<td>161</td>
<td>0</td>
<td>91</td>
</tr>
<tr>
<td>TMR wet tropospheric corr (m)</td>
<td>8058(5.5%)</td>
<td>2823(6.7%)</td>
<td></td>
</tr>
<tr>
<td>JMR wet tropospheric corr (m)</td>
<td></td>
<td></td>
<td>118 (<1%)</td>
</tr>
<tr>
<td>Dual-freq ionospheric correction</td>
<td>7950(5.5%)</td>
<td>2450(5.8%)</td>
<td>1000(1.4%)</td>
</tr>
<tr>
<td>Sea State Bias, Chambers,BM4</td>
<td>826(<1%)</td>
<td>102(<1%)</td>
<td>1619(2.2%)</td>
</tr>
<tr>
<td>Hs-Ku outside the range {0,8}[m]</td>
<td>7125(4.9%)</td>
<td>2161(5.1%)</td>
<td>374 (<1%)</td>
</tr>
<tr>
<td>Sigma-0 Ku outside {6,27} [db]</td>
<td>3125(2.1%)</td>
<td>690 (1.6%)</td>
<td>151(<1%)</td>
</tr>
<tr>
<td>Std of range(10HzKu) : {0,0.15}[m]</td>
<td>11504(7.9%)</td>
<td>3303(7.8%)</td>
<td></td>
</tr>
<tr>
<td>Std of range(20HzKu) : {0,0.15}[m]</td>
<td></td>
<td>1204(1.7%)</td>
<td></td>
</tr>
<tr>
<td># of 10Hz Ku range meas: {8.5, 10.5}</td>
<td>15898(11%)</td>
<td>4595(10.8%)</td>
<td></td>
</tr>
<tr>
<td># of 20Hz Ku range meas: {15.5, 20.5}</td>
<td></td>
<td></td>
<td>3664(5.1%)</td>
</tr>
<tr>
<td>Engineering flags</td>
<td>29339(20%)</td>
<td>10964(25.6%)</td>
<td>17647(24.4%)</td>
</tr>
<tr>
<td>Std of Hs(10Hz-Ku) outside {0,0.09}[m]</td>
<td>7642(5.2%)</td>
<td>1996(4.7%)</td>
<td></td>
</tr>
<tr>
<td>Std of Hs(20Hz-Ku) outside {0,0.09}[m]</td>
<td></td>
<td></td>
<td>1526(2.1%)</td>
</tr>
</tbody>
</table>
SSHA without tides (i.e. tide correction applied) map scaled to min=−0.2; max=0.2
NEW PROCESSING STRATEGIES FOR ALTIMETRY IN COASTAL AREAS

Laurent ROBLOU
In collaboration with:
Jérôme BOUFFARD, Stéfano VIGNUDELLI, Florent LYARD, Matthieu Le Hénaff, Julien LAMOUROUX
Satellite altimetry in the coastal domain

Is satellite altimetry possible in the coastal domain?

Problems

✓ Increased space/time sub-sampling:
 ➢ Shorter horizontal scales
 ➢ Amplified high frequencies
✓ Increased error budget
✓ Increased loss of data

Solutions

✓ New sensors
✓ Multi-mission approach
✓ Improve data post-processing
Data post-processing: example of the X-TRACK processor

The objective of the X-TRACK processor is to improve both the quantity and quality of altimeter sea surface measurements in coastal regions:

Features:

✓ redefining the data editing strategy to minimize the loss of data during the correction phase
✓ using improved local modelling of tidal and short-period atmospheric forcing
✓ Using an accurate mean sea level consistent with the coastal data set
X-TRACK historical playground: NW Mediterranean Sea
X-TRACK features: a new data editing strategy (1)

- The X-TRACK processor adopts a new data screening strategy and filtering techniques allowing to recover data that would otherwise be flagged as bad.

- De-flagging and re-interpolation of each single correction yields a reconstructed level profile.

Circles: uncorrected sea level anomalies (SLA) and original corrections from the AVISO Geophysical Data Records (GDR).

Brown line: SLA after application of the standard corrections from the GDR.

Purple line: the new SLA profile computed with X-TRACK processor.
X-TRACK features: a new data editing strategy (2)

number of T/P cycles exploitable

AVISO DT-(M) SLA product

X-TRACK SLA product

Cal/Val sites
X-TRACK features: a new data editing strategy (3)

- More altimeter data near to and far from the coast
- Coherent behaviour for ascending/descending passes
- Time series are longer (+10%) and less noisy (-7%)
X-TRACK features: regional de-aliasing corrections (1)

Issues:

✓ Aliasing of the tides and short-period ocean response to meteorological forcing is a major problem when estimating the seasonal or longer time scales oceanic circulations in altimeter data.

✓ Because of their insufficient spatial resolution that implies unresolved rapid changes in tidal features and an incorrect frictional dissipation, current global model cannot represent tides over continental shelves below a decimetre error level.

Solution: defining regional modelling of tides and ocean response to atmospheric forcing.

✓ T-UGO 2D model (Mog2D model follow-on) for both processes.
X-TRACK features: regional de-aliasing corrections (1)

LEGOS regional models

Caspian Sea

Amazonian shelf

New processing strategies for altimetry in coastal regions

Roblou et al. 06/02/2008
X-TRACK features: regional de-aliasing corrections (2)

Mog2D tidal regional models

M2 mean error: 1.3 cm rms (TG), 0.8 cm rms (ALT)
K1 mean error: 1.0 cm rms (TG), 0.9 cm rms (ALT)

Roblou (2003)

M2 mean error: 28.4 cm (TG), 5.3 cm (ALT)
K1 mean error: 1.7 cm (TG), 1.2 cm (ALT)
M4 mean error: 5.7 cm (TG), 1.2 cm (ALT)

Letellier (2004),
X-TRACK features: regional de-aliasing corrections (3)

Comparisons to tide gauges data:

- Gain vs IB: 46%
- Gain vs Mog2D-G correction: 5%

Similar results w.r.t altimetry (Bouffard)
X-TRACK features: an accurate mean sea level (1)

- Until accurate estimates of the geoid small- and meso-scales undulations become available, the dynamic topography of the ocean is not fully accessible in the altimeter measurements.
- Thus, the ocean mean sea surface provides an alternative reference surface, suitable for the observation of the ocean variability.
- Standard MSS products are not accurate in coastal regions

Solutions:
- ✓ Higher resolution MSS (including across-track effects) computed from an inverse method
- ✓ MSS consistent with the improved altimeter products
X-TRACK features: an accurate mean sea level (2)

MSS products comparisons

Sea level anomalies versus latitude

SLA=SSH-MSS CLS01
SLA=SSH-MSS X-TRACK
Difference

New processing strategies for altimetry in coastal regions

Roblou et al.
06/02/2008
X-TRACK work in progress: orbit error reduction

Time evolution of the mean along-track SLA, GFO 074

![Graph showing steps in processing strategies for altimetry](image)

- **Step 1:** Raw signal vs Low Frequency (LF) signal,
- **Step 2:** Localization and elimination of the outliers: 3σ filtering of the High frequency signal,
- **Step 3:** Re-building of the total corrected signal: linear regression.
X-TRACK work in progress: high rate data stream

Averaged along-track spatial spectrum, T/P track 146.

Small scale dynamics

Noise Level

Bouffard et al
Corrections

• **MWR correction**
 – MWR correction breaks down close to the coast
 – Jason-1 has particularly large footprint
 – Envisat MWR land flag leaves land affected data

• **Models**
 – Beware of land effects in dry tropo, wet tropo and MOG2D models

• **Recommendations**
 – Data bases should attempt to incorporate MWR extension near coast
 – Land effects in model atmospheric corrections should be avoided by using pressure and total water vapour to sea level
• **Flags**
 – Open ocean flags can generally be used
 – Use MWR land flag with caution; use it to transition to model

• **Edit criteria**
 – Open ocean edit criteria can generally be used in coastal regions
 – Keep zero and “negative” SWH (calm seas)

• **Multi-Hertz data**
 – Given the footprint size, sampling distance, measurement noise and typical length scales of ocean dynamics, multi-Hertz data are not very useful for coastal purposes

• **Recommendations**
 – Data bases should recommend editing criteria tailored to coastal regions