Radar Altimeter Datasets for Coastal Applications

Remko Scharroo, Altimetrics LLC, Cornish, New Hampshire

with contributions from

Phil Callahan, Franck Mercier, Helen Snaith, Stefano Vignudelli

and others

Coastal Altimeter Workshop
Silver Spring, Maryland, 5–7 February 2008
Altimeter Datasets

• Geophysical Data Records (GDRs)
 – Name GDR was inherited from the Seasat mission
 – Generally meant as *archival ocean product*
 – Provided on CD, DVD or FTP by the satellite mission project (NASA/PO.DAAC, CNES/AVISO, IFREMER, NOAA)

• Along-track Sea Level Anomaly Products
 – AVISO has produced on CDs (now FTP) *Sea Level Anomaly* data sets for TOPEX, ERS, Envisat and Jason-1
 – Attempt to provide easy access to altimeter data for ocean apps

• Gridded Datasets
 – Meso-scale and ocean-currents (research and commerce)

• On-line Altimeter Databases
 – RADS, ADS, CADS, ACCESS07
 – On-line web interface or off-line mirrored database
 – Continuously or regularly updated
Geophysical Data Records (GDRs)

- **Altimeter data and corrections**
 - Altimeter range, significant wave height, backscatter coefficient
 - 1-Hz (mean and standard deviation) and individual 10/20-Hz
 - Orbital altitude
 - Propagation delay corrections (dry, wet, iono)
 - Ocean interface corrections (sea state bias)
 - Geodetic corrections (tides, mean sea surface, inverse barometer)

- **Format**
 - Mission-specific, some awkward and ill-designed
 - Requires specialist knowledge to decipher
 - Often resistant to expansion (no/few spares)

- **Content and use**
 - Determined years prior to launch, reluctance to update
 - No consistency between missions
 - Aimed at ocean applications (but can be tweaked for coastal)
Along-track Sea Level Anomalies (SLA)

- **Examples**
 - AVISO/DUACS multi- and mono-mission SLA products

- **Altimeter data and corrections**
 - Only sea level anomalies (no corrections)
 - Interpolated to 1-Hz nodes
 - All corrections applied, no option to pick and choose

- **Format**
 - Small, easy to use, non-expert user with need for along-track data
 - FTP, NetCDF (therefore expandable)
 - Google Earth

- **Content and use**
 - Consistency between missions attempted
 - Updates made occasionally
 - Regional products for N-E Atlantic and Gulf of Mexico
 - Ocean variability, operational oceanography

CLS is working on a coastal product for Jason-2: PISTACH
Coastal Altimetry Workshop

Silver Spring 5-7 February 2008
PISTACH PRODUCTS

PISTACH, a CNES initiative: see presentation by Nicolas PICOT

Objectives:
• Definition of Level-2 altimetry products dedicated to coastal zones (and continental hydrology)
• implementation of a prototype (must be ready for Jason-2 launch) that integrates new algorithms
• generation of the products (I)GDR during 1 year, first products to be delivered in october 2008, before the OSTST.

Improvements (wrt Jason-2 regular products)
• Local models of tides, DAC, …
• Retracking (see slides of Pierre THIBAUT)
• Wet tropo (see slides of Estelle OBLIGIS and Franck MERCIER)
• SSB (see slides of Sylvie LABROUE)
PISTACH PRODUCTS

Format and structure:
• NetCDF, same as Jason-2 regular products
• probably 20Hz sampling instead of 1Hz
• New fields added to the product.
• → evolution of the regular products

Coverage
• Distance to shoreline < 200 km
• Distance to shoreline < 400 km
 and bathy > -5000m
• Continental shelves
• Specific basins (Med sea, Gulf of Mexico, …)

Dissemination
Via AVISO
Gridded Sea Level Anomalies (MSLA)

- **Examples**
 - AVISO/DUACS multi- and mono-mission MSLA products

- **Altimeter data and corrections**
 - Only sea level anomalies (no corrections)
 - Gridded to 1°x1° or 1/3°x1/3° resolution
 - All corrections applied, no option to pick and choose

- **Format**
 - Small, easy to use, particularly for those familiar with gridded data
 - FTP, NetCDF
 - Google Earth

- **Content and use**
 - Several missions combined
 - Updates made occasionally
 - Ocean variability, operational oceanography
On-line Databases

- RADS - Radar Altimeter Database System (Delft/NOAA)
- ADS - Altimeter Data System (GFZ Potsdam)
- CADS - Canadian Altimetry Database and Processing Centre (Univ. Calgary) - Under construction
- ACCESS07 - Web based altimeter service (NASA) - Proposed

• Altimeter data and corrections
 - Everything that’s on the GDR (current at 1-Hz)
 - More and up-to-date models (tides, propagation corrections)
 - Numerous bugs and anomalies fixed
 - Data calibrated

• Format
 - Proprietary expandable format (now being replaced by NetCDF)
 - FTP, rsync

• Content and use
 - All missions; Updates made regularly
 - Seeks widest possible use (oceanography, coastal, GSLR)
Web-Based Altimeter Service

ACCESS07 Proposal

Phil Callahan, PI
Brian Wilson, Rob Raskin

January 31, 2008
Web-Based Altimeter Service Overview

• Provide system to allow users to access and combine various parts of altimeter GDRs on demand.
 – Projects generate fundamental data record from telemetry with time, orbit, instrument information and basic corrections
 – Producers of other “components” of the altimeter record (see list next page) register products with Altimeter Service
 • Components can be data or data+operator(s)
 • Producers need to provide some documentation to guide use

• User interaction
 – Login (possible advanced functions: save profile, interests)
 – Select time period, region for product(s)
 – Select components
 – Select delivery method
 – Visualize selected results
Main Altimeter Data Components

- Location kernel: time, latitude, longitude
- Instrument measurements: fully corrected range, significant wave height (SWH), backscatter coefficient (sigma0)
- Instrument-based environmental corrections: radiometer wet troposphere, dual frequency ionosphere
- Flags, particularly on data quality and usability
- Parameters that are likely to be replaced by various investigators over time or for specific purposes from the baseline GDR:
 - Precision Orbit altitude (every frame, or approximately every second)
 - Elastic ocean tide
 - Mean Sea Surface or Geoid (reference surface)
 - Dry troposphere correction
 - Inverse barometer/barotropic correction
 - Electromagnetic/Sea State Bias correction
 - Pole Tide
- Detailed and ancillary data that are not needed for most investigations.
Some Usage Scenarios

- **Basic altimeter data records**: Project produces initial IGDR; all subsequent updates done with service – add POD, improved atmospheric models (observed replaces predict), any other improvements available on ~1 month time scale
- **Model improvements/updates**: Particularly revised orbits, improved tides, radiometer calibrations, barotropic corrections, geoid, mean sea surface
- **Regional/coastal products**: Local tide models, radiometer corrections (processed to remove land effects), local barotropic models
 - Special retracking could be linked to original points
- **Storm products**: Time/space subsetting, special tropo models
Implementation Issues

• Modularization of GDR processing
 – Remote callable; separation of processing and data
 – Bandwidth for distributing waveform data; specialize retracking

• Registration of Data Components
 – Generators need to cooperate by providing information to the central server, making data available routinely, continuously

• Registration of Models and Operators
 – Information as for data plus remote callable software
 – Where is processing done?

• Flagging – is there interaction among components that needs to be considered in generating flags?

• Documentation of data and models
 – Usage guidance, caveats
 – Error analysis
what we need from coastal altimeter data...

...and why we don’t get it at the moment
We Need

• All parameters (Height, SWH, wind speed)
• All corrections (instrumental, path delay, tides, geoid)
• Highest spatial resolution => 10/20Hz
• Precise geolocation
How will data be used

• Without assimilation?
 • Unlikely

• Gridded products?
 • Easy to assimilate
 • Can they capture variability?
 • High level pre-assimilated solutions

• Along track
Coastal specific processing

• Waveform tracking for SSH
 • effects of varying topography & geometry
 • stay locked on sea surface

• SWH
 • Change in wave spectra

• Wind Speed
 • change in distribution of scatterers
Corrections

• Instrumental
 • In theory - the same!

• Tides
 • High spatial & temporal frequency
 • Surges

• Geoid & Mean Sea Surface
 • Short wavelengths significant
 • Cross-track separation ≈ along-track
Corrections

• Atmospheric
 • High spatial resolution changes
 • Interpolation of large grid not enough
 • Measured wet trop not yet “fixable”

• Ionospheric
 • Dual frequency -> retrack second waveform
 • Extrapolate to coast -> model may be better
Regional Plug-ins

• Corrections cannot be calculated globally
• Models for “global coast” do not exist
• Use regional plug-in data
 • Tides & high frequency responses
 • Geoid & MSS
 • Atmospheric (profiles & analysis)
RADS

- Probably closest in strategy
- Provides consistent database, including all corrections, in consistent format, for all altimeter missions
- Common meta file format (description of data, scale, offset, and constants)
- Along track ie highest spatial resolution
Advantages

• All parameters - not just Surface Height
• Geophysical corrections and reference frame common to all altimeters
• Selection of correction and quality control criteria at time of selection
 • Preferences controlled by user
• Ultra-flexible file augmentation
GDR data

• Higher level GDR data
 • widely available but don’t fit the bill
• 10/20Hz values only available for SSH (& sometimes SWH)
• No consistency across altimeters
Geosat GM mission

• Data available from NOAA
 • parameters from 4 different retracker results
 • All data and corrections at 10Hz
Web Services

• Make use of protocols to allow access to services.

• Similar to program function calls.

• Client accesses a web service using a recognised call

• web service returns the required information in standard manner
Why Bother?

• Allow access to data or services WITHOUT exposing the host system
 • e.g. allow access to data without needing full userid access

• Allows “simple” machine - machine access
 • eg - access data on remote sites from within matlab code
Example: download with real-time check
(for instance in an environmental crisis, when ‘latest model’ is essential)
Example: download with real-time check
(for instance in an environmental crisis, when ‘latest model’ is essential)
File-based architecture 1: precomputation of corrected params

- 1. SLAs (+ SWH, wind speed) are precomputed offline from raw data + corrections and stored

2. When user asks for data, the OPeNDAP server serves the precomputed SLAs

PROs: simple, no extra client required
CONs: allows only predefined correction schemes
File-based architecture 2: computation at the user

- The user runs a specialized client which gets raw data + corrections via the OPeNDAP server and computes the parameter.

PROs: trivial to setup on server side

CONs: needs separate, non-standard user clients for each application (they can be implemented with a range of software tools sitting on top of the standard OPeNDAP client)
File-based architecture 3: “on the fly” computation

- The request from the user to the OPeNDAP server prompts an interface server that retrieves the raw data and corrections and computes the parameter on the fly.

PROs: request is fully customizable
CONs: interface server needs to be implemented and be able to interpret OPeNDAP request - CDAT is a possible candidate.
For Discussion

• What products do we need?
 – Data frequency: 1-Hz, 10/20-Hz, other?
 – Data corrections: Best available, Up-to-date?
 – Data sampling: Along-track, Gridded?
 – Data volume: Global, Regional?
 – Data format: GDR, NetCDF?
 – Data access: DVD, CD, FTP, Web?
 – Data latency: days, weeks, months?

• What service provides this now?