Jason-2 Wet Tropospheric Coastal Performance

Shannon Brown
JPL
Several significant improvements made to radiometer on Jason-2
- AMR - Advanced Microwave Radiometer

1 meter, unblocked reflector to improve coastal resolution and reduce geographically correlated errors
- Compared to partially blocked 0.6 m reflector for JMR/TMR

Improved land flagging

Improved beam matching algorithm
Jason-2 AMR

Ocean Surface Topography Mission
• Spatial resolution nearly doubled from TMR and JMR
 – ~26 km for AMR compared to ~50 km for JMR/TMR

• 98-99% of energy received within 75 km of boresight, compared to about 92-93% for TMR/JMR
AMR Coastal Performance

Ocean Surface Topography Mission

- AMR land flagging algorithm based on beam weighted land fraction in the main beam, instead of a constant radial distance to land
 - Not all land is equal
 - Flags data that will have errors > 5 mm

- AMR beam matching algorithm matches beams to 23.8 GHz footprint, instead of degrading resolution of all channels to the 18.7 GHz footprint
Coastal Performance

- Along track averaging can improve coastal approach for preferred land/ground track orientations
- Additional improvements may be made through correction algorithms based on pattern weighted main beam land fractions
 - CLS (PISTACH) and JPL (proposed to OSTST)

~10 km approach at Harvest estimated for AMR

~20-25 km approach estimated for worst case